

AGNICO EAGLE

IMPACTFUL USE OF LOCAL RESOURCES

A stepping stone to unlock the mineral potential

Christian Soucy

Presented by - Nunavut Energy Optimization

Goals of the presentation

- Highlight the challenging context of mining in Nunavut
- Overview the environmental and financial impacts of reliance on diesel
- Present the initiatives put forward by AEM
- Overview the portfolio of technologies to address the energy issue
- Discuss the most promising scenarios
- Plant a seed for potential partnerships and business opportunities
- Opportunity to ask questions
- Generate great discussions

"Premium associated with developing a remote and northern mine ranges from 2 to 2.5 times the cost of a comparable mine in a southern region "

2017 Facts & Figures of the Canadian Mining Industry

Mining Association of Canada

Example scale energy challenges

2 power plants in Nunavut 100% built and operated by AEM

- 60MW of installed generating capacity

130M liters of diesel YEARLY to support Meliadine and Meadowbank operations

- Approx 60% (80M liters) dedicated to produce electricity

Cost to produce energy approx. 25-27 cents / kWh

(6 X more than southern operations)

□ Cost of electricity = 10% - 15% of total costs / oz in Nunavut

□ 340 000t GHG emissions per year for mining activities and electricity production

Carbon tax = additional burden to develop the arctic Electricity generation

Pan-Canadian efficiency baseline : 420 t GHG / GWhe

Agnico Eagle is actively involved with MAC

□ Re-Invest to Do Good

Different operating context

Make/model	Fuel	Specific GHG Production (t/MWh _e)
Wärtsilä 12V32	Arctic diesel	625
Caterpillar 3616	Arctic diesel	660
Caterpillar 3516	Arctic diesel	750
Wärtsilä 12V34DF	Natural gas	420

-

Extensive reliance on diesel....beyond the numbers

Environmental risk

- Transportation (main ships / barges loading & unloading / tanker trucks on long distance)
- Storage facility
- Manipulation

Logistic challenges

- Tight sea-lift season
- Autonomy
- All weather access road conditions

Highly dependent on an external resource

Status quo is not an option

November 9th 2017

Nunavut Strategic Energy Workshop

Time is of the essence

Vision statement

Support the Nunavut strategic plan by implementing reliable and sustainable alternate energy supplies that will enhance the capacity to mine in the arctic.

Mission statement

Maximize the use of local sources of energy

and promote an awareness culture

approach ...up to now 2018 – 2022

MEADOWBANK

Alternative Energy Portfolio 2023+

Electrify the Work

Target of -10% to -25% diesel

Projects pipeline

Manitoba – Nunavut power line

Kivalliq communities average load (along power line)

 Arviat MW Whale Cove Rankin Inlet MW Chesterfield Inlet Baker Lake MW Total Total MW Meadowbank average load MW++ Meliadine forecasted average load MW 	AEM is the biggest consumer by far				
 Arviat Whale Cove Rankin Inlet Rankin Inlet Chesterfield Inlet Baker Lake MW Total MW MW* Meadowbank average load MW++ Meliadine forecasted average load MW 	Total :	40	MW		
 Arviat Whale Cove Rankin Inlet Chesterfield Inlet Baker Lake Total Total MWV* MWV* MWV* 	Meliadine forecasted average load	24	MW		
 Arviat Whale Cove Whale Cove Rankin Inlet Chesterfield Inlet Baker Lake MW MW 4.6 MW* 	Meadowbank average load	16	MW++		
 Arviat Whale Cove Whale Cove Rankin Inlet Chesterfield Inlet Baker Lake MW 	Total :	4.6	MW*		
	 Arviat Whale Cove Rankin Inlet Chesterfield Inlet Baker Lake 	1 0.25 2 0.3 1	MW MW MW MW		
	A m diat	4	N // N /		

📅 Manitoba – Nunavut power line

☐ The power line is the <u>long term</u> solution

A power line has some drawbacks

- Power independence
 Nunavut would be fully dependent on Manitoba
- Reliability
 No redundancy
 Only backup is diesel (if sufficient)
- Timing
 10+ years to permit and build

Landmark : Wataynikaneyap

Clean Energy for Nunavut can be fast and simple

The best **<u>short-term</u>** alternative is a wind-diesel micro-grid because it is:

- Quick Could be built in 3 years
- Proven Technology Landmarks : Diavik, Raglan
- Independent Would provide clean Nunavut made power
- Economic The project pays for itself

Advantages of partnering with Agnico Eagle :

- Local credibility
- Proven strong capacity to deliver large scale projects in the arctic
- Northern logistics expertise
- Actively involved in developing local capacity

Option 1 - Small scale wind farm at the mine only

- Wind farm : 1 up to 6 wind turbines + storage
- Location : Meliadine

Environmental benefits

-30% diesel / - 36 000t GHG per year

Business opportunities

aemnunavut.ca

Small scale wind farm construction, supplies, O&M

Requirements : Federal funding

Option 2 – Innovative micro-grid for the Kivalliq

Wind farm:Up to 15 wind turbines + storage + connect RankinLocations:Meliadine , Rankin Inlet , Baker Lake , Arviat

Environmental benefits

-45% diesel / - 55 000t GHG per year (for the mine only)

Multiple business opportunities

- Large size wind farm construction in multiple locations
- Sell wind power (JV multiple ownership scenarios)
- Create jobs (Operation & maintenance of wind farms)
- Export skillset to develop other renewable projects in Nunavut

Requirements : Federal funding

Local support is key to secure the funding

World's largest wind-diesel

AGNICO EAGLE

The Concept : Clean power for 7,500 Kivalliq residents

- 100% local Inuit owned
- Generate significant savings and GHG emission reductions
- Pay for itself <u>before a power line is built</u>
- Provide an independent source of power

The Fed is currently reaching out to AEM for the next steps

There is momentum for A Powerful Legacy

Key success factors and opportunities

- The Kivalliq needs impactful initiatives deployable in the short term such as the wind farm to :
 - Maintain a favorable context of growth for the mining sector and communities
 - Reduce operating costs to unlock more mineral resources
 - Protect the industry sector from commodity price volatility

Secure the load for a future power line to come

- 100% local Inuit owned JV to generate significant revenues in the short term by selling wind power
 - Re-invest revenues in building local capacity
 - Re-invest revenues in developing local infrastructures (roads & electrical connections)
 - Re-invest revenues in telecommunication (ex. Subsea optic fibre)

Long term opportunity : Sell Nunavut wind power back south over the future power line

Strategic positioning towards a common goal : Connecting the North

Ongoing activities and next steps

Provide letters of local support to the Fed to secure the funding

- Keep reaching out to local groups, business owners, government
- □ Select the business partners and develop the best ownership structure (JV)
- Continue environmental assessment
- Deliver the technical feasibility study by the end of 2018
- Focus group consultations to start soon
- Public hearings to come next year

Let's work together

We have the potential to transform the future of Nunavut for generations to come with multi-decades of benefits in terms of continuous employment and financial benefits for the communities